Enhancing Malware Classification: A Comparative Study of Feature Selection Models with Parameter Optimization

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

This study assesses the impact of seven feature selection algorithms (Minimum Redundancy Maximum Relevance (MRMR), Mutual Information (MI), Chi-Square (Chi), Leave One Feature Out (LOFO), Feature Relevance-based Unsupervised Feature Selection (FRUFS), A General Framework for Auto-Weighted Feature Selection via Global Redundancy Minimization (AGRM), and BoostARoota) across two malware datasets (Microsoft and API call sequences) using three machine learning models (Extreme Gradient Boosting (Xgboost), Random Forest, and Histogram-Based Gradient Boosting (Hist Gradient Boosting)). The analysis reveals that no feature selection algorithm uniformly outperforms the others as their effectiveness varies based on the dataset and model characteristics. Specifically, BoostARoota demonstrated significant compatibility with the Microsoft dataset, especially after parameter optimization, whereas its performance varied with the API call sequences dataset, suggesting the need for customized parameter selection. This study highlights the necessity of tailored feature selection approaches and parameter adjustments to optimize machine learning model performance across different datasets. © 2024 IEEE.

Description

Keywords

Feature selection, Machine learning, Malware classification, Parameter optimization

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

N/A

Scopus Q

N/A

Source

2024 Systems and Information Engineering Design Symposium, SIEDS 2024 -- 2024 Systems and Information Engineering Design Symposium, SIEDS 2024 -- 3 May 2024 -- Charlottesville -- 199691

Volume

Issue

Start Page

511

End Page

516