Enhancing Malware Classification: a Comparative Study of Feature Selection Models With Parameter Optimization

dc.authorscopusid 58530614500
dc.authorscopusid 6507328166
dc.contributor.author Curebal,F.
dc.contributor.author Dağ, Hasan
dc.contributor.author Dag,H.
dc.contributor.other Management Information Systems
dc.date.accessioned 2024-06-23T21:39:24Z
dc.date.available 2024-06-23T21:39:24Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp Curebal F., Information Science University at Albany, Albany, NY, United States; Dag H., Management Information Systems, Kadir Has University, Istanbul, Turkey en_US
dc.description.abstract This study assesses the impact of seven feature selection algorithms (Minimum Redundancy Maximum Relevance (MRMR), Mutual Information (MI), Chi-Square (Chi), Leave One Feature Out (LOFO), Feature Relevance-based Unsupervised Feature Selection (FRUFS), A General Framework for Auto-Weighted Feature Selection via Global Redundancy Minimization (AGRM), and BoostARoota) across two malware datasets (Microsoft and API call sequences) using three machine learning models (Extreme Gradient Boosting (Xgboost), Random Forest, and Histogram-Based Gradient Boosting (Hist Gradient Boosting)). The analysis reveals that no feature selection algorithm uniformly outperforms the others as their effectiveness varies based on the dataset and model characteristics. Specifically, BoostARoota demonstrated significant compatibility with the Microsoft dataset, especially after parameter optimization, whereas its performance varied with the API call sequences dataset, suggesting the need for customized parameter selection. This study highlights the necessity of tailored feature selection approaches and parameter adjustments to optimize machine learning model performance across different datasets. © 2024 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/SIEDS61124.2024.10534669
dc.identifier.endpage 516 en_US
dc.identifier.isbn 979-835038514-4
dc.identifier.scopus 2-s2.0-85195324534
dc.identifier.startpage 511 en_US
dc.identifier.uri https://doi.org/10.1109/SIEDS61124.2024.10534669
dc.identifier.uri https://hdl.handle.net/20.500.12469/5873
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2024 Systems and Information Engineering Design Symposium, SIEDS 2024 -- 2024 Systems and Information Engineering Design Symposium, SIEDS 2024 -- 3 May 2024 -- Charlottesville -- 199691 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Feature selection en_US
dc.subject Machine learning en_US
dc.subject Malware classification en_US
dc.subject Parameter optimization en_US
dc.title Enhancing Malware Classification: a Comparative Study of Feature Selection Models With Parameter Optimization en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscovery e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files