SPINAL: scalable protein interaction network alignment

dc.contributor.authorErten, Cesim
dc.contributor.authorErten, Cesim
dc.date.accessioned2019-06-27T08:03:38Z
dc.date.available2019-06-27T08:03:38Z
dc.date.issued2013
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractMotivation: Given protein-protein interaction (PPI) networks of a pair of species a pairwise global alignment corresponds to a one-to-one mapping between their proteins. Based on the presupposition that such a mapping provides pairs of functionally orthologous proteins accurately the results of the alignment may then be used in comparative systems biology problems such as function prediction/verification or construction of evolutionary relationships. Results: We show that the problem is NP-hard even for the case where the pair of networks are simply paths. We next provide a polynomial time heuristic algorithm SPINAL which consists of two main phases. In the first coarse-grained alignment phase we construct all pairwise initial similarity scores based on pairwise local neighborhood matchings. Using the produced similarity scores the fine-grained alignment phase produces the final one-to-one mapping by iteratively growing a locally improved solution subset. Both phases make use of the construction of neighborhood bipartite graphs and the contributors as a common primitive. We assess the performance of our algorithm on the PPI networks of yeast fly human and worm. We show that based on the accuracy measures used in relevant work our method outperforms the state-of-the-art algorithms. Furthermore our algorithm does not suffer from scalability issues as such accurate results are achieved in reasonable running times as compared with the benchmark algorithms.en_US]
dc.identifier.citation93
dc.identifier.doi10.1093/bioinformatics/btt071en_US
dc.identifier.endpage924
dc.identifier.issn1367-4803en_US
dc.identifier.issn1460-2059en_US
dc.identifier.issn1367-4803
dc.identifier.issn1460-2059
dc.identifier.issue7
dc.identifier.pmid23413436en_US
dc.identifier.scopus2-s2.0-84875609301en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage917en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/818
dc.identifier.urihttps://doi.org/10.1093/bioinformatics/btt071
dc.identifier.volume29en_US
dc.identifier.wosWOS:000316695700013en_US
dc.identifier.wosqualityQ1
dc.institutionauthorErten, Cesimen_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.relation.journalBioinformaticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSPINAL: scalable protein interaction network alignmenten_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationba94d962-58f9-4c10-bdc8-667be0ec3b67
relation.isAuthorOfPublication.latestForDiscoveryba94d962-58f9-4c10-bdc8-667be0ec3b67

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SPINAL scalable protein interaction network alignment.pdf
Size:
225.05 KB
Format:
Adobe Portable Document Format
Description: