Spinal: Scalable Protein Interaction Network Alignment

dc.contributor.author Aladağ, Ahmet Emre
dc.contributor.author Erten, Cesim
dc.contributor.author Erten, Cesim
dc.contributor.other Computer Engineering
dc.date.accessioned 2019-06-27T08:03:38Z
dc.date.available 2019-06-27T08:03:38Z
dc.date.issued 2013
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.description.abstract Motivation: Given protein-protein interaction (PPI) networks of a pair of species a pairwise global alignment corresponds to a one-to-one mapping between their proteins. Based on the presupposition that such a mapping provides pairs of functionally orthologous proteins accurately the results of the alignment may then be used in comparative systems biology problems such as function prediction/verification or construction of evolutionary relationships. Results: We show that the problem is NP-hard even for the case where the pair of networks are simply paths. We next provide a polynomial time heuristic algorithm SPINAL which consists of two main phases. In the first coarse-grained alignment phase we construct all pairwise initial similarity scores based on pairwise local neighborhood matchings. Using the produced similarity scores the fine-grained alignment phase produces the final one-to-one mapping by iteratively growing a locally improved solution subset. Both phases make use of the construction of neighborhood bipartite graphs and the contributors as a common primitive. We assess the performance of our algorithm on the PPI networks of yeast fly human and worm. We show that based on the accuracy measures used in relevant work our method outperforms the state-of-the-art algorithms. Furthermore our algorithm does not suffer from scalability issues as such accurate results are achieved in reasonable running times as compared with the benchmark algorithms. en_US]
dc.identifier.citationcount 93
dc.identifier.doi 10.1093/bioinformatics/btt071 en_US
dc.identifier.endpage 924
dc.identifier.issn 1367-4803 en_US
dc.identifier.issn 1460-2059 en_US
dc.identifier.issn 1367-4803
dc.identifier.issn 1460-2059
dc.identifier.issue 7
dc.identifier.pmid 23413436 en_US
dc.identifier.scopus 2-s2.0-84875609301 en_US
dc.identifier.startpage 917 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/818
dc.identifier.uri https://doi.org/10.1093/bioinformatics/btt071
dc.identifier.volume 29 en_US
dc.identifier.wos WOS:000316695700013 en_US
dc.identifier.wosquality Q1
dc.institutionauthor Erten, Cesim en_US
dc.language.iso en en_US
dc.publisher Oxford University Press en_US
dc.relation.journal Bioinformatics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 109
dc.title Spinal: Scalable Protein Interaction Network Alignment en_US
dc.type Article en_US
dc.wos.citedbyCount 95
dspace.entity.type Publication
relation.isAuthorOfPublication ba94d962-58f9-4c10-bdc8-667be0ec3b67
relation.isAuthorOfPublication.latestForDiscovery ba94d962-58f9-4c10-bdc8-667be0ec3b67
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SPINAL scalable protein interaction network alignment.pdf
Size:
225.05 KB
Format:
Adobe Portable Document Format
Description: