Machine Learning Model To Predict an Adult Learner's Decision To Continue Esol Course or Not

No Thumbnail Available

Date

2019

Authors

Dahman, Mohammed R.
Dağ, Hasan

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

This study investigated the ability of the demographic and the affective variables to predict the adult learners' decision to continue ESOL courser. 278 adult learners, enrolled on ESOL course at FLS institution in Istanbul, Turkey, participated in the study. The result showed that the continued or dropped out groups, demonstrated statistical differences in the demographic variable (the placement test score) with a magnitude of large effect size (.378). Additionally, the result showed the effect size in the perception of the affective variables (motivation, attitude, and anxiety), accounts for about 50% of the variation between the continuation and dropout groups. Following that, three machine learning models were proposed; all possible subset regression analysis was used to compare the three models. The adequate model, which fitted the demographic variable (the placement test score) and the affective variables (motivation, attitude, and anxiety), correctly predicted 83.3% of the adult learners' decision to continue ESOL course. The model showed about 68% goodness-of-fit. The cultural implications of these findings are discussed, along with suggestions for future research.

Description

Keywords

Predictive model, ESOL adult learners, Predictive model, ESOL adult learners

Turkish CoHE Thesis Center URL

Fields of Science

0602 languages and literature, 05 social sciences, 0501 psychology and cognitive sciences, 06 humanities and the arts

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
4

Source

Education and Information Technologies

Volume

24

Issue

4

Start Page

2429

End Page

2452
PlumX Metrics
Citations

CrossRef : 4

Scopus : 6

Captures

Mendeley Readers : 42

SCOPUS™ Citations

6

checked on Feb 01, 2026

Web of Science™ Citations

3

checked on Feb 01, 2026

Page Views

7

checked on Feb 01, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
4.87367887

Sustainable Development Goals

5

GENDER EQUALITY
GENDER EQUALITY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo