Machine Learning Model To Predict an Adult Learner's Decision To Continue Esol Course or Not

gdc.relation.journal Education and Information Technologies en_US
dc.contributor.author Dahman, Mohammed R.
dc.contributor.author Dağ, Hasan
dc.contributor.other Management Information Systems
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2020-12-14T17:21:46Z
dc.date.available 2020-12-14T17:21:46Z
dc.date.issued 2019
dc.description.abstract This study investigated the ability of the demographic and the affective variables to predict the adult learners' decision to continue ESOL courser. 278 adult learners, enrolled on ESOL course at FLS institution in Istanbul, Turkey, participated in the study. The result showed that the continued or dropped out groups, demonstrated statistical differences in the demographic variable (the placement test score) with a magnitude of large effect size (.378). Additionally, the result showed the effect size in the perception of the affective variables (motivation, attitude, and anxiety), accounts for about 50% of the variation between the continuation and dropout groups. Following that, three machine learning models were proposed; all possible subset regression analysis was used to compare the three models. The adequate model, which fitted the demographic variable (the placement test score) and the affective variables (motivation, attitude, and anxiety), correctly predicted 83.3% of the adult learners' decision to continue ESOL course. The model showed about 68% goodness-of-fit. The cultural implications of these findings are discussed, along with suggestions for future research. en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.1007/s10639-019-09884-5 en_US
dc.identifier.issn 1360-2357 en_US
dc.identifier.issn 1573-7608 en_US
dc.identifier.issn 1360-2357
dc.identifier.issn 1573-7608
dc.identifier.scopus 2-s2.0-85061713018 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3550
dc.identifier.uri https://doi.org/10.1007/s10639-019-09884-5
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Education and Information Technologies
dc.rights info:eu-repo/semantics/embargoedAccess en_US
dc.subject Predictive model en_US
dc.subject ESOL adult learners en_US
dc.title Machine Learning Model To Predict an Adult Learner's Decision To Continue Esol Course or Not en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Dahman, Mohammed R. en_US
gdc.author.institutional Dağ, Hasan
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access embargoed access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
gdc.description.endpage 2452 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 2429 en_US
gdc.description.volume 24 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2911617975
gdc.identifier.wos WOS:000475970900013 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.9123528E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Predictive model
gdc.oaire.keywords ESOL adult learners
gdc.oaire.popularity 3.169696E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0602 languages and literature
gdc.oaire.sciencefields 05 social sciences
gdc.oaire.sciencefields 0501 psychology and cognitive sciences
gdc.oaire.sciencefields 06 humanities and the arts
gdc.openalex.fwci 3.985
gdc.openalex.normalizedpercentile 0.9
gdc.opencitations.count 4
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 42
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.wos.citedcount 3
relation.isAuthorOfPublication e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscovery e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files