Artificial Neural Network Based Estimation of Sparse Multipath Channels in Ofdm Systems

Loading...
Publication Logo

Date

2021, 2021

Authors

Şenol, Habib
Abdur Rehman Bin, Tahir
Özmen, Atilla

Journal Title

Journal ISSN

Volume Title

Publisher

SPRINGER, VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In order to increase the transceiver performance in frequency selective fading channel environment, orthogonal frequency division multiplexing (OFDM) system is used to combat inter-symbol-interference. In this work, a channel estimation scheme for an OFDM system in the presence of sparse multipath channel is studied using the artificial neural networks (ANN). By means of ANN's learning capability, it is shown that how to model and obtain a channel estimate and how it allows the proposed technique to give a better system throughput. The performance of proposed method is compared with the Matching Pursuit (MP) and Orthogonal MP (OMP) algorithms that are commonly used in compressed sensing literature in order to estimate delay locations and tap coefficients of a sparse multipath channel. In this work, we propose a performance- efficient ANN based sparse channel estimator with lower computational cost than that of MP and OMP based channel estimators. Even though there is a slight performance lost in a few simulation scenarios in which we have lower computational complexity advantage, in most scenarios, our computer simulations corroborate that our low complexity ANN based channel estimator has better mean squared error and the corresponding symbol error rate performances comparing with MP and OMP algorithms.

Description

Keywords

Artificial neural networks, Sparse channel, Channel estimation, Compressed sensing, Matching pursuit, OFDM, Artificial neural networks, Matching pursuit, Channel estimation, Compressed sensing, Sparse channel, OFDM

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
8

Source

Telecommunication Systems

Volume

77

Issue

Start Page

231

End Page

240
PlumX Metrics
Citations

CrossRef : 7

Scopus : 10

Captures

Mendeley Readers : 3

SCOPUS™ Citations

10

checked on Feb 15, 2026

Web of Science™ Citations

7

checked on Feb 15, 2026

Page Views

7

checked on Feb 15, 2026

Downloads

175

checked on Feb 15, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.37522134

Sustainable Development Goals