Artificial Neural Network Based Estimation of Sparse Multipath Channels in Ofdm Systems

dc.contributor.author Şenol, Habib
dc.contributor.author Şenol, Habib
dc.contributor.author Abdur Rehman Bin, Tahir
dc.contributor.author Özmen, Atilla
dc.contributor.author Özmen, Atilla
dc.contributor.other Computer Engineering
dc.contributor.other Electrical-Electronics Engineering
dc.date 2021-01
dc.date.accessioned 2021-04-23T13:19:18Z
dc.date.available 2021-04-23T13:19:18Z
dc.date.issued 2021-01
dc.date.issued 2021
dc.description.abstract In order to increase the transceiver performance in frequency selective fading channel environment, orthogonal frequency division multiplexing (OFDM) system is used to combat inter-symbol-interference. In this work, a channel estimation scheme for an OFDM system in the presence of sparse multipath channel is studied using the artificial neural networks (ANN). By means of ANN's learning capability, it is shown that how to model and obtain a channel estimate and how it allows the proposed technique to give a better system throughput. The performance of proposed method is compared with the Matching Pursuit (MP) and Orthogonal MP (OMP) algorithms that are commonly used in compressed sensing literature in order to estimate delay locations and tap coefficients of a sparse multipath channel. In this work, we propose a performance- efficient ANN based sparse channel estimator with lower computational cost than that of MP and OMP based channel estimators. Even though there is a slight performance lost in a few simulation scenarios in which we have lower computational complexity advantage, in most scenarios, our computer simulations corroborate that our low complexity ANN based channel estimator has better mean squared error and the corresponding symbol error rate performances comparing with MP and OMP algorithms. en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.1007/s11235-021-00754-5 en_US
dc.identifier.issn 1018-4864
dc.identifier.issn 1018-4864 en_US
dc.identifier.scopus 2-s2.0-85099920741 en_US
dc.identifier.scopusquality Q2
dc.identifier.uri https://hdl.handle.net/20.500.12469/3987
dc.identifier.wos WOS:000611912500001 en_US
dc.institutionauthor Şenol, Habib en_US
dc.institutionauthor Abdur Rehman Bin, Tahir en_US
dc.institutionauthor Özmen, Atilla en_US
dc.language.iso en en_US
dc.publisher SPRINGER, VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS en_US
dc.relation.journal TELECOMMUNICATION SYSTEMS en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 10
dc.subject Artificial neural networks en_US
dc.subject Sparse channel en_US
dc.subject Channel estimation en_US
dc.subject Compressed sensing en_US
dc.subject Matching pursuit en_US
dc.subject OFDM en_US
dc.title Artificial Neural Network Based Estimation of Sparse Multipath Channels in Ofdm Systems en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication 2c09cda4-9d83-4836-8695-b36fc6c9c4ec
relation.isAuthorOfPublication cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscovery 2c09cda4-9d83-4836-8695-b36fc6c9c4ec
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Senol2021_Article_ArtificialNeuralNetworkBasedEs.pdf
Size:
883.3 KB
Format:
Adobe Portable Document Format
Description: