Artificial neural network based estimation of sparse multipath channels in OFDM systems

dc.contributor.authorŞenol, Habib
dc.contributor.authorÖzmen, Atilla
dc.contributor.authorÖzmen, Atilla
dc.date2021-01
dc.date.accessioned2021-04-23T13:19:18Z
dc.date.available2021-04-23T13:19:18Z
dc.date.issued2021-01
dc.date.issued2021
dc.description.abstractIn order to increase the transceiver performance in frequency selective fading channel environment, orthogonal frequency division multiplexing (OFDM) system is used to combat inter-symbol-interference. In this work, a channel estimation scheme for an OFDM system in the presence of sparse multipath channel is studied using the artificial neural networks (ANN). By means of ANN's learning capability, it is shown that how to model and obtain a channel estimate and how it allows the proposed technique to give a better system throughput. The performance of proposed method is compared with the Matching Pursuit (MP) and Orthogonal MP (OMP) algorithms that are commonly used in compressed sensing literature in order to estimate delay locations and tap coefficients of a sparse multipath channel. In this work, we propose a performance- efficient ANN based sparse channel estimator with lower computational cost than that of MP and OMP based channel estimators. Even though there is a slight performance lost in a few simulation scenarios in which we have lower computational complexity advantage, in most scenarios, our computer simulations corroborate that our low complexity ANN based channel estimator has better mean squared error and the corresponding symbol error rate performances comparing with MP and OMP algorithms.en_US
dc.identifier.citation3
dc.identifier.doi10.1007/s11235-021-00754-5en_US
dc.identifier.issn1018-4864
dc.identifier.issn1018-4864en_US
dc.identifier.scopus2-s2.0-85099920741en_US
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://hdl.handle.net/20.500.12469/3987
dc.identifier.wosWOS:000611912500001en_US
dc.institutionauthorŞenol, Habiben_US
dc.institutionauthorAbdur Rehman Bin, Tahiren_US
dc.institutionauthorÖzmen, Atillaen_US
dc.language.isoenen_US
dc.publisherSPRINGER, VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDSen_US
dc.relation.journalTELECOMMUNICATION SYSTEMSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectSparse channelen_US
dc.subjectChannel estimationen_US
dc.subjectCompressed sensingen_US
dc.subjectMatching pursuiten_US
dc.subjectOFDMen_US
dc.titleArtificial neural network based estimation of sparse multipath channels in OFDM systemsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication2c09cda4-9d83-4836-8695-b36fc6c9c4ec
relation.isAuthorOfPublicationcf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscovery2c09cda4-9d83-4836-8695-b36fc6c9c4ec

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Senol2021_Article_ArtificialNeuralNetworkBasedEs.pdf
Size:
883.3 KB
Format:
Adobe Portable Document Format
Description: