A GSO-based multi-objective technique for performance optimization of blockchain-based industrial Internet of things

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 1%
Influence
Top 10%
Popularity
Top 1%

Research Projects

Journal Issue

Abstract

The latest developments in the industrial Internet of things (IIoT) have opened up a collection of possibilities for many industries. To solve the massive IIoT data security and efficiency problems, a potential approach is considered to satisfy the main needs of IIoT, such as high throughput, high security, and high efficiency, which is named blockchain. The blockchain mechanism is considered a significant approach to boosting data protection and performance. In the quest to amplify the capabilities of blockchain-based IIoT, a pivotal role is accorded to the Glowworm Swarm Optimization (GSO) algorithm. Inspired by the collaborative brilliance of glowworms in nature, the GSO algorithm offers a unique approach to harmonizing these conflicting aims. This paper proposes a new approach to improve the performance optimization of blockchain-based IIoT using the GSO algorithm due to the blockchain's contradictory objectives. The proposed blockchain-based IIoT system using the GSO algorithm addresses scalability challenges typically associated with blockchain technology by efficiently managing interactions among nodes and dynamically adapting to network demands. The GSO algorithm optimizes the allocation of resources and decision-making, reducing inefficiencies and bottlenecks. The method demonstrates considerable performance improvements through extensive simulations compared to traditional algorithms, offering a more scalable and efficient solution for industrial applications in the context of the IIoT. The extensive simulation and computational study have shown that the proposed method using GSO considerably improves the objective function and blockchain-based IIoT systems' performance compared to traditional algorithms. It provides more efficient and secure systems for industries and corporations. We introduced a blockchain-based IIoT using a glowworm swarm optimization algorithm motivated by glowworms' behavior, movements' probability toward each other, and luciferin quantity. The proposed approach significantly improves four-way trade-offs such as scalability, decentralization, cost, and latency. image

Description

Zanbouri, Kouros/0000-0003-0252-8282; Heidari, Arash/0000-0003-4279-8551

Keywords

blockchain, Glowworm Swarm Optimization, industry, internet of things, multi-objective optimization

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

International Journal of Communication Systems

Volume

37

Issue

15

Start Page

End Page

PlumX Metrics
Citations

Scopus : 84

Captures

Mendeley Readers : 27

SCOPUS™ Citations

84

checked on Feb 08, 2026

Web of Science™ Citations

75

checked on Feb 08, 2026

Page Views

5

checked on Feb 08, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
129.8502724

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

15

LIFE ON LAND
LIFE ON LAND Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo