A GSO-based multi-objective technique for performance optimization of blockchain-based industrial Internet of things

dc.contributor.author Zanbouri, Kouros
dc.contributor.author Darbandi, Mehdi
dc.contributor.author Nassr, Mohammad
dc.contributor.author Heidari, Arash
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Yalcin, Senay
dc.date.accessioned 2024-10-15T19:40:57Z
dc.date.available 2024-10-15T19:40:57Z
dc.date.issued 2024
dc.description Zanbouri, Kouros/0000-0003-0252-8282; Heidari, Arash/0000-0003-4279-8551 en_US
dc.description.abstract The latest developments in the industrial Internet of things (IIoT) have opened up a collection of possibilities for many industries. To solve the massive IIoT data security and efficiency problems, a potential approach is considered to satisfy the main needs of IIoT, such as high throughput, high security, and high efficiency, which is named blockchain. The blockchain mechanism is considered a significant approach to boosting data protection and performance. In the quest to amplify the capabilities of blockchain-based IIoT, a pivotal role is accorded to the Glowworm Swarm Optimization (GSO) algorithm. Inspired by the collaborative brilliance of glowworms in nature, the GSO algorithm offers a unique approach to harmonizing these conflicting aims. This paper proposes a new approach to improve the performance optimization of blockchain-based IIoT using the GSO algorithm due to the blockchain's contradictory objectives. The proposed blockchain-based IIoT system using the GSO algorithm addresses scalability challenges typically associated with blockchain technology by efficiently managing interactions among nodes and dynamically adapting to network demands. The GSO algorithm optimizes the allocation of resources and decision-making, reducing inefficiencies and bottlenecks. The method demonstrates considerable performance improvements through extensive simulations compared to traditional algorithms, offering a more scalable and efficient solution for industrial applications in the context of the IIoT. The extensive simulation and computational study have shown that the proposed method using GSO considerably improves the objective function and blockchain-based IIoT systems' performance compared to traditional algorithms. It provides more efficient and secure systems for industries and corporations. We introduced a blockchain-based IIoT using a glowworm swarm optimization algorithm motivated by glowworms' behavior, movements' probability toward each other, and luciferin quantity. The proposed approach significantly improves four-way trade-offs such as scalability, decentralization, cost, and latency. image en_US
dc.identifier.doi 10.1002/dac.5886
dc.identifier.issn 1074-5351
dc.identifier.issn 1099-1131
dc.identifier.scopus 2-s2.0-85198546762
dc.identifier.uri https://doi.org/10.1002/dac.5886
dc.identifier.uri https://hdl.handle.net/20.500.12469/6397
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof International Journal of Communication Systems
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject blockchain en_US
dc.subject Glowworm Swarm Optimization en_US
dc.subject industry en_US
dc.subject internet of things en_US
dc.subject multi-objective optimization en_US
dc.title A GSO-based multi-objective technique for performance optimization of blockchain-based industrial Internet of things en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Zanbouri, Kouros/0000-0003-0252-8282
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.scopusid 57212168473
gdc.author.scopusid 54897517900
gdc.author.scopusid 57370210100
gdc.author.scopusid 57217424609
gdc.author.scopusid 59125628000
gdc.author.scopusid 58833344600
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.author.wosid Zanbouri, Kouros/C-5031-2019
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Zanbouri, Kouros] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz, Iran; [Darbandi, Mehdi] Pole Univ Leonard de Vinci, Paris, France; [Nassr, Mohammad] Tartous Univ, Commun Technol Engn Dept, Tartous, Syria; [Nassr, Mohammad] Gulf Univ Sci & Technol, Dept Math & Nat Sci, Mishref Campus, Kuwait, Kuwait; [Heidari, Arash] Istanbul Atlas Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkiye; [Heidari, Arash] Halic Univ, Dept Software Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Western Caspian Univ, Res Ctr High Technol & Innovat Engn, Baku, Azerbaijan; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu, Taiwan; [Yalcin, Senay] Bahcesehir Univ, Sch Engn & Nat Sci, Dept Energy Syst Engn, Istanbul, Turkiye en_US
gdc.description.issue 15 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 37 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4400660594
gdc.identifier.wos WOS:001270925900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 81.0
gdc.oaire.influence 6.9054114E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 6.043989E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 129.8502724
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 27
gdc.plumx.newscount 1
gdc.plumx.scopuscites 84
gdc.scopus.citedcount 84
gdc.virtual.author Jafari Navimipour, Nima
gdc.wos.citedcount 75
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files