Covid-19 Modeling Based on Real Geographic and Population Data

dc.contributor.author Baysazan, Emir
dc.contributor.author Berker, A. Nihat
dc.contributor.author Mandal, Hasan
dc.contributor.author Kaygusuz, Hakan
dc.date.accessioned 2023-10-19T15:12:54Z
dc.date.available 2023-10-19T15:12:54Z
dc.date.issued 2023
dc.description.abstract Background/aim: Intercity travel is one of the most important parameters for combating a pandemic. The ongoing COVID-19 pandemic has resulted in different computational studies involving intercity connections. In this study, the effects of intercity connections during an epidemic such as COVID-19 are evaluated using a new network model. Materials and methods: This model considers the actual geographic neighborhood and population density data. This new model is applied to actual Turkish data by means of provincial connections and populations. A Monte Carlo algorithm with a hybrid lattice model is applied to a lattice with 8802 data points. Results: Around Monte Carlo step 70, the number of active cases in Turkiye reaches up to 8.0% of the total population, which is followed by a second wave at around Monte Carlo step 100. The number of active cases vanishes around Monte Carlo step 160. Starting with Istanbul, the epidemic quickly expands between steps 60 and 100. Simulation results fit the actual mortality data in Turkiye. Conclusion: This model is quantitatively very efficient in modeling real-world COVID-19 epidemic data based on populations and geographical intercity connections, by means of estimating the number of deaths, disease spread, and epidemic termination. en_US
dc.description.sponsorship Turkish Academy of Sciences [T?BA] en_US
dc.description.sponsorship Acknowledgments We thank F. Bedia Erim for a critical reading of our manuscript. A. Nihat Berker gratefully acknowledges support by Turkish Academy of Sciences (T?BA) . en_US
dc.identifier.doi 10.55730/1300-0144.5589 en_US
dc.identifier.issn 1300-0144
dc.identifier.issn 1303-6165
dc.identifier.scopus 2-s2.0-85149134224 en_US
dc.identifier.uri https://doi.org/10.55730/1300-0144.5589
dc.identifier.uri 1161052
dc.identifier.uri https://hdl.handle.net/20.500.12469/5559
dc.language.iso en en_US
dc.publisher Tubitak Scientific & Technological Research Council Turkey en_US
dc.relation.ispartof Turkish Journal of Medical Sciences en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Monte Carlo simulation en_US
dc.subject epidemic en_US
dc.subject geographical model en_US
dc.subject susceptible-infected-quarantine-recovered model en_US
dc.subject COVID-19 en_US
dc.title Covid-19 Modeling Based on Real Geographic and Population Data en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.departmenttemp [Baysazan, Emir] Istanbul Univ, Council Higher Educ, TEBIP High Performers Program, Istanbul, Turkiye; [Berker, A. Nihat] Kadir Has Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Berker, A. Nihat] TUBITAK Res Inst Fundamental Sci, Kocaeli, Turkiye; [Berker, A. Nihat] MIT, Dept Phys, Cambridge, MA USA; [Mandal, Hasan] Sci & Technol Res Council Turkiye TUBITAK, Ankara, Turkiye; [Kaygusuz, Hakan] Altinbas Univ, Fac Engn & Architecture, Dept Basic Sci, Istanbul, Turkiye; [Kaygusuz, Hakan] Sabanci Univ, SUNUM Nanotechnol Res Ctr, Istanbul, Turkiye en_US
gdc.description.endpage 339 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 333 en_US
gdc.description.volume 53 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4321795888
gdc.identifier.pmid 36945958 en_US
gdc.identifier.trdizinid https://search.trdizin.gov.tr/yayin/detay/1161052 en_US
gdc.identifier.wos WOS:000941667500039 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.5565678E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Physics - Physics and Society
gdc.oaire.keywords SARS-CoV-2
gdc.oaire.keywords Populations and Evolution (q-bio.PE)
gdc.oaire.keywords COVID-19
gdc.oaire.keywords FOS: Physical sciences
gdc.oaire.keywords 612
gdc.oaire.keywords Physics and Society (physics.soc-ph)
gdc.oaire.keywords epidemic
gdc.oaire.keywords geographical model
gdc.oaire.keywords susceptible-infected-quarantine-recovered model
gdc.oaire.keywords FOS: Biological sciences
gdc.oaire.keywords Humans
gdc.oaire.keywords Computer Simulation
gdc.oaire.keywords Quantitative Biology - Populations and Evolution
gdc.oaire.keywords Pandemics
gdc.oaire.keywords Monte Carlo simulation
gdc.oaire.keywords Algorithms
gdc.oaire.keywords Research Article
gdc.oaire.popularity 3.5453727E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 03 medical and health sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.79002872
gdc.openalex.normalizedpercentile 0.62
gdc.opencitations.count 0
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 1
gdc.plumx.newscount 1
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Berker, Ahmet Nihat
gdc.wos.citedcount 1
relation.isAuthorOfPublication db2f6241-4861-48d5-b8ca-f0482a4d86b3
relation.isAuthorOfPublication.latestForDiscovery db2f6241-4861-48d5-b8ca-f0482a4d86b3
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5559.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text