Canonical Forms for Families of Anti-Commuting Diagonalizable Linear Operators

gdc.relation.journal Linear algebra and its applications en_US
dc.contributor.author Kumbasar, Yalcin
dc.contributor.author Bilge, Ayşe Hümeyra
dc.date.accessioned 2019-06-27T08:04:33Z
dc.date.available 2019-06-27T08:04:33Z
dc.date.issued 2012
dc.description.abstract It is well known that a commuting family of diagonalizable linear operators on a finite dimensional vector space is simultaneously diagonalizable. In this paper we consider a family A = {A(a)} A(a) : V -> V a = 1... N of anti-commuting (complex) linear operators on a finite dimensional vector space. We prove that if the family is diagonalizable over the complex numbers then V has an A-invariant direct sum decomposition into subspaces V(alpha) such that the restriction of the family A to V(alpha) is a representation of a Clifford algebra. Thus unlike the families of commuting diagonalizable operators diagonalizable anti-commuting families cannot be simultaneously digonalized but on each subspace they can be put simultaneously to (non-unique) canonical forms. The construction of canonical forms for complex representations is straightforward while for the real representations it follows from the results of [A.H. Bilge S. Kocak S. Uguz Canonical bases for real representations of Clifford algebras Linear Algebra Appl. 419 (2006) 417-439]. (C) 2011 Elsevier Inc. All rights reserved. en_US]
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.laa.2011.06.034 en_US
dc.identifier.issn 0024-3795 en_US
dc.identifier.issn 0024-3795
dc.identifier.scopus 2-s2.0-80055063962 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/955
dc.identifier.uri https://doi.org/10.1016/j.laa.2011.06.034
dc.language.iso en en_US
dc.publisher Elsevier Science Inc en_US
dc.relation.ispartof Linear Algebra and its Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Anti-commuting linear operators en_US
dc.subject Representations of Clifford algebras en_US
dc.title Canonical Forms for Families of Anti-Commuting Diagonalizable Linear Operators en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Bilge, Ayşe Hümeyra en_US
gdc.author.institutional Bilge, Ayşe Hümeyra
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
gdc.description.endpage 85
gdc.description.issue 1
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 79 en_US
gdc.description.volume 436 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W1988595730
gdc.identifier.wos WOS:000297431200008 en_US
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.8069944E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Numerical Analysis
gdc.oaire.keywords Representations of Clifford algebras
gdc.oaire.keywords Algebra and Number Theory
gdc.oaire.keywords Anti-commuting linear operators
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Discrete Mathematics and Combinatorics
gdc.oaire.keywords Geometry and Topology
gdc.oaire.keywords Representation Theory (math.RT)
gdc.oaire.keywords Mathematics - Representation Theory
gdc.oaire.popularity 8.0590284E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.34
gdc.opencitations.count 1
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication.latestForDiscovery 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Canonical forms for families of anti-commuting diagonalizable linear operators.pdf
Size:
188.44 KB
Format:
Adobe Portable Document Format
Description: