Canonical Forms for Families of Anti-Commuting Diagonalizable Linear Operators
| gdc.relation.journal | Linear algebra and its applications | en_US |
| dc.contributor.author | Kumbasar, Yalcin | |
| dc.contributor.author | Bilge, Ayşe Hümeyra | |
| dc.date.accessioned | 2019-06-27T08:04:33Z | |
| dc.date.available | 2019-06-27T08:04:33Z | |
| dc.date.issued | 2012 | |
| dc.description.abstract | It is well known that a commuting family of diagonalizable linear operators on a finite dimensional vector space is simultaneously diagonalizable. In this paper we consider a family A = {A(a)} A(a) : V -> V a = 1... N of anti-commuting (complex) linear operators on a finite dimensional vector space. We prove that if the family is diagonalizable over the complex numbers then V has an A-invariant direct sum decomposition into subspaces V(alpha) such that the restriction of the family A to V(alpha) is a representation of a Clifford algebra. Thus unlike the families of commuting diagonalizable operators diagonalizable anti-commuting families cannot be simultaneously digonalized but on each subspace they can be put simultaneously to (non-unique) canonical forms. The construction of canonical forms for complex representations is straightforward while for the real representations it follows from the results of [A.H. Bilge S. Kocak S. Uguz Canonical bases for real representations of Clifford algebras Linear Algebra Appl. 419 (2006) 417-439]. (C) 2011 Elsevier Inc. All rights reserved. | en_US] |
| dc.identifier.citationcount | 0 | |
| dc.identifier.doi | 10.1016/j.laa.2011.06.034 | en_US |
| dc.identifier.issn | 0024-3795 | en_US |
| dc.identifier.issn | 0024-3795 | |
| dc.identifier.scopus | 2-s2.0-80055063962 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/955 | |
| dc.identifier.uri | https://doi.org/10.1016/j.laa.2011.06.034 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Science Inc | en_US |
| dc.relation.ispartof | Linear Algebra and its Applications | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Anti-commuting linear operators | en_US |
| dc.subject | Representations of Clifford algebras | en_US |
| dc.title | Canonical Forms for Families of Anti-Commuting Diagonalizable Linear Operators | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Bilge, Ayşe Hümeyra | en_US |
| gdc.author.institutional | Bilge, Ayşe Hümeyra | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 85 | |
| gdc.description.issue | 1 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 79 | en_US |
| gdc.description.volume | 436 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W1988595730 | |
| gdc.identifier.wos | WOS:000297431200008 | en_US |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.8069944E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Representations of Clifford algebras | |
| gdc.oaire.keywords | Algebra and Number Theory | |
| gdc.oaire.keywords | Anti-commuting linear operators | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Discrete Mathematics and Combinatorics | |
| gdc.oaire.keywords | Geometry and Topology | |
| gdc.oaire.keywords | Representation Theory (math.RT) | |
| gdc.oaire.keywords | Mathematics - Representation Theory | |
| gdc.oaire.popularity | 8.0590284E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.34 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
| relation.isAuthorOfPublication.latestForDiscovery | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
| relation.isOrgUnitOfPublication | 28868d0c-e9a4-4de1-822f-c8df06d2086a | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 28868d0c-e9a4-4de1-822f-c8df06d2086a |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Canonical forms for families of anti-commuting diagonalizable linear operators.pdf
- Size:
- 188.44 KB
- Format:
- Adobe Portable Document Format
- Description: