On the Classification of Fifth Order Quasi-linear Non-constant Separant Scalar Evolution Equations of the KdV-Type
dc.contributor.author | Bilge, Ayşe Hümeyra | |
dc.contributor.author | Bilge, Ayşe Hümeyra | |
dc.date.accessioned | 2021-02-07T16:24:07Z | |
dc.date.available | 2021-02-07T16:24:07Z | |
dc.date.issued | 2012 | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.description.abstract | Fifth order, quasi-linear, non-constant separant evolution equations are of the form u(t) = A(partial derivative(5)u/partial derivative x(5)) + (B) over tilde, where A and (B) over tilde are functions of x, t, u and of the derivatives of u with respect to x up to order 4. We use the existence of a "formal symmetry'', hence the existence of "canonical conservation laws'' rho((i)), i = -1, . . . , 5 as an integrability test. We define an evolution equation to be of the KdV-Type, if all odd numbered canonical conserved densities are nontrivial. We prove that fifth order, quasi-linear, non-constant separant evolution equations of KdV type are polynomial in the function a = A(1/5); a = (alpha u(3)(2) + beta u(3) + gamma)(-1/2), where alpha, beta, and gamma are functions of x, t, u and of the derivatives of u with respect to x up to order 2. We determine the u(2) dependency of a in terms of P = 4 alpha gamma - beta(2) > 0 and we give an explicit solution, showing that there are integrable fifth order non-polynomial evolution equations. | en_US |
dc.description.sponsorship | Tubitak | en_US |
dc.identifier.citation | 2 | |
dc.identifier.doi | 10.1143/JPSJ.81.054001 | en_US |
dc.identifier.issn | 0031-9015 | en_US |
dc.identifier.issn | 0031-9015 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-84860627338 | en_US |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/3880 | |
dc.identifier.uri | https://doi.org/10.1143/JPSJ.81.054001 | |
dc.identifier.volume | 81 | en_US |
dc.identifier.wos | WOS:000303244800005 | en_US |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Bilge, Ayşe Hümeyra | en_US |
dc.language.iso | en | en_US |
dc.publisher | Physical Soc Japan | en_US |
dc.relation.journal | Journal of the Physical Society of Japan | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Evolution equations | en_US |
dc.subject | Integrability | en_US |
dc.subject | Classification | en_US |
dc.subject | Recursion operator | en_US |
dc.subject | Formal symmetry | en_US |
dc.title | On the Classification of Fifth Order Quasi-linear Non-constant Separant Scalar Evolution Equations of the KdV-Type | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
relation.isAuthorOfPublication.latestForDiscovery | 1b50a6b2-7290-44da-b8d5-f048fea8b315 |