Generalized Einstein Tensor for a Weyl Manifold and Its Applications
| dc.contributor.author | Özdeğer, Abdülkadir | |
| dc.date.accessioned | 2019-06-27T08:03:43Z | |
| dc.date.available | 2019-06-27T08:03:43Z | |
| dc.date.issued | 2013 | |
| dc.description.abstract | It is well known that the Einstein tensor G for a Riemannian manifold defined by R (alpha) (beta) = g (beta gamma) R (gamma I +/-) where R (gamma I +/-) and R are respectively the Ricci tensor and the scalar curvature of the manifold plays an important part in Einstein's theory of gravitation as well as in proving some theorems in Riemannian geometry. In this work we first obtain the generalized Einstein tensor for a Weyl manifold. Then after studying some properties of generalized Einstein tensor we prove that the conformal invariance of the generalized Einstein tensor implies the conformal invariance of the curvature tensor of the Weyl manifold and conversely. Moreover we show that such Weyl manifolds admit a one-parameter family of hypersurfaces the orthogonal trajectories of which are geodesics. Finally a necessary and sufficient condition in order that the generalized circles of a Weyl manifold be preserved by a conformal mapping is stated in terms of generalized Einstein tensors at corresponding points. | en_US] |
| dc.identifier.doi | 10.1007/s10114-012-0582-5 | en_US |
| dc.identifier.issn | 1439-8516 | |
| dc.identifier.issn | 1439-7617 | |
| dc.identifier.scopus | 2-s2.0-84871972817 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/831 | |
| dc.identifier.uri | https://doi.org/10.1007/s10114-012-0582-5 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Heidelberg | en_US |
| dc.relation.ispartof | Acta Mathematica Sinica, English Series | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Weyl manifold | en_US |
| dc.subject | Einstein-Weyl manifold | en_US |
| dc.subject | Einstein tensor | en_US |
| dc.subject | Generalized Einstein tensor | en_US |
| dc.subject | Generalized circle | en_US |
| dc.title | Generalized Einstein Tensor for a Weyl Manifold and Its Applications | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Özdeğer, Abdülkadir | en_US |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 382 | |
| gdc.description.issue | 2 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 373 | en_US |
| gdc.description.volume | 29 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2124468521 | |
| gdc.identifier.wos | WOS:000313064700013 | en_US |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 3.304E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Generalized Einstein tensor | |
| gdc.oaire.keywords | Weyl manifold | |
| gdc.oaire.keywords | Generalized circle | |
| gdc.oaire.keywords | Einstein-Weyl manifold | |
| gdc.oaire.keywords | Einstein tensor | |
| gdc.oaire.keywords | generalized circle | |
| gdc.oaire.keywords | Local Riemannian geometry | |
| gdc.oaire.keywords | Special Riemannian manifolds (Einstein, Sasakian, etc.) | |
| gdc.oaire.keywords | generalized Einstein tensor | |
| gdc.oaire.keywords | Local differential geometry | |
| gdc.oaire.keywords | Conformal differential geometry | |
| gdc.oaire.popularity | 2.9987335E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.09 | |
| gdc.opencitations.count | 3 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 6 | |
| gdc.relation.journal | Acta Mathematica Sinica-English Series | |
| gdc.scopus.citedcount | 6 | |
| gdc.wos.citedcount | 5 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | b20623fc-1264-4244-9847-a4729ca7508c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Generalized Einstein tensor for a Weyl manifold and its applications.pdf
- Size:
- 196.56 KB
- Format:
- Adobe Portable Document Format
- Description:
