On Symbolic Prediction of Time Series for Predictive Maintenance Based on Sax-Lstm

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

This work proposed a new forecasting approach for predictive maintenance in industrial settings, combining standard segmentation approaches like Symbolic Aggregate Approximation (SAX) and Piecewise Aggregate Approximation (PAA) with LSTM (Long-Short Time Memory). The work aims to construct a robust forecasting mechanism to estimate maintenance requirements in advance properly. We first demonstrated the results of the proposed approach for synthetically generated data and extended the results with real industrial vibration data. The algorithm's performance is assessed using real-world industry data from steel production furnaces, where timely maintenance is critical for increasing operating efficiency and reducing downtime. Experimental results show that using SAX and LSTM for forecasting industrial time series data achieves high accuracy rates (90.2 %) in a reasonable computational time. © 2024 IEEE.

Description

Keywords

Long Short Term Memory (Lstm), Machine Learning Algorithms, Maintenance Forecasting, Piecewise Aggregate Approximation (Paa), Predictive Maintenance, Symbolic Aggregate Approximation (Sax)

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

N/A

Scopus Q

N/A

Source

UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906

Volume

Issue

Start Page

950

End Page

954