On Symbolic Prediction of Time Series for Predictive Maintenance Based on Sax-Lstm

dc.authorscopusid59520675800
dc.authorscopusid24823826600
dc.authorscopusid35782637700
dc.contributor.authorGüler, A.
dc.contributor.authorBalli, T.
dc.contributor.authorYetkin, E.F.
dc.date.accessioned2025-02-15T19:38:29Z
dc.date.available2025-02-15T19:38:29Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-tempGüler A., Kadir Has University, Istanbul, Turkey; Balli T., Kadir Has University, Istanbul, Turkey; Yetkin E.F., Kadir Has University, Istanbul, Turkeyen_US
dc.description.abstractThis work proposed a new forecasting approach for predictive maintenance in industrial settings, combining standard segmentation approaches like Symbolic Aggregate Approximation (SAX) and Piecewise Aggregate Approximation (PAA) with LSTM (Long-Short Time Memory). The work aims to construct a robust forecasting mechanism to estimate maintenance requirements in advance properly. We first demonstrated the results of the proposed approach for synthetically generated data and extended the results with real industrial vibration data. The algorithm's performance is assessed using real-world industry data from steel production furnaces, where timely maintenance is critical for increasing operating efficiency and reducing downtime. Experimental results show that using SAX and LSTM for forecasting industrial time series data achieves high accuracy rates (90.2 %) in a reasonable computational time. © 2024 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/UBMK63289.2024.10773607
dc.identifier.endpage954en_US
dc.identifier.isbn9798350365887
dc.identifier.scopus2-s2.0-85215531188
dc.identifier.scopusqualityN/A
dc.identifier.startpage950en_US
dc.identifier.urihttps://doi.org/10.1109/UBMK63289.2024.10773607
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7191
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofUBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLong Short Term Memory (Lstm)en_US
dc.subjectMachine Learning Algorithmsen_US
dc.subjectMaintenance Forecastingen_US
dc.subjectPiecewise Aggregate Approximation (Paa)en_US
dc.subjectPredictive Maintenanceen_US
dc.subjectSymbolic Aggregate Approximation (Sax)en_US
dc.titleOn Symbolic Prediction of Time Series for Predictive Maintenance Based on Sax-Lstmen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files