A Mathematical Description of the Critical Point in Phase Transitions

dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Pekcan, Önder
dc.contributor.author Pekcan, Mehmet Önder
dc.contributor.other Industrial Engineering
dc.contributor.other Molecular Biology and Genetics
dc.date.accessioned 2021-01-31T20:03:48Z
dc.date.available 2021-01-31T20:03:48Z
dc.date.issued 2013
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
dc.description.abstract Let y(x) be a smooth sigmoidal curve, y((n)) be its nth derivative and {x(m,i)} and {x(a,i)}, i = 1, 2, ... , be the set of points where respectively the derivatives of odd and even order reach their extreme values. We argue that if the sigmoidal curve y(x) represents a phase transition, then the sequences {x(m,i)} and {x(a,i)} are both convergent and they have a common limit x(c) that we characterize as the critical point of the phase transition. In this study, we examine the logistic growth curve and the Susceptible-Infected-Removed (SIR) epidemic model as typical examples of symmetrical and asymmetrical transition curves. Numerical computations indicate that the critical point of the logistic growth curve that is symmetrical about the point (x(0), y(0)) is always the point (x(0), y(0)) but the critical point of the asymmetrical SIR model depends on the system parameters. We use the description of the sol-gel phase transition of polyacrylamide-sodium alginate (SA) composite (with low SA concentrations) in terms of the SIR epidemic model, to compare the location of the critical point as described above with the "gel point" determined by independent experiments. We show that the critical point t(c) is located in between the zero of the third derivative t(a) and the inflection point t(m) of the transition curve and as the strength of activation (measured by the parameter k/eta of the SIR model) increases, the phase transition occurs earlier in time and the critical point, t(c), moves toward t(a). en_US
dc.description.sponsorship Tubitak en_US
dc.identifier.citationcount 10
dc.identifier.doi 10.1142/S0129183113500654 en_US
dc.identifier.issn 0129-1831 en_US
dc.identifier.issn 0129-1831
dc.identifier.issue 10 en_US
dc.identifier.scopus 2-s2.0-84882764288 en_US
dc.identifier.scopusquality Q3
dc.identifier.uri https://hdl.handle.net/20.500.12469/3855
dc.identifier.uri https://doi.org/10.1142/S0129183113500654
dc.identifier.volume 24 en_US
dc.identifier.wos WOS:000324541100001 en_US
dc.institutionauthor Bilge, Ayşe Hümeyra en_US
dc.institutionauthor Pekcan, Önder en_US
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.journal International Journal of Modern Physics C en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 8
dc.subject Gelation en_US
dc.subject Phase Transition en_US
dc.subject Epidemic Models en_US
dc.title A Mathematical Description of the Critical Point in Phase Transitions en_US
dc.type Article en_US
dc.wos.citedbyCount 10
dspace.entity.type Publication
relation.isAuthorOfPublication 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication e5459272-ce6e-44cf-a186-293850946f24
relation.isAuthorOfPublication.latestForDiscovery 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files