A privacy-aware method for COVID-19 detection in chest CT images using lightweight deep conventional neural network and blockchain

dc.contributor.author Heidari, Arash
dc.contributor.author Toumaj, Shiva
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Unal, Mehmet
dc.date.accessioned 2023-10-19T15:12:13Z
dc.date.available 2023-10-19T15:12:13Z
dc.date.issued 2022
dc.description.abstract With the global spread of the COVID-19 epidemic, a reliable method is required for identifying COVID-19 victims. The biggest issue in detecting the virus is a lack of testing kits that are both reliable and affordable. Due to the virus's rapid dissemination, medical professionals have trouble finding positive patients. However, the next real-life issue is sharing data with hospitals around the world while considering the organizations' privacy concerns. The primary worries for training a global Deep Learning (DL) model are creating a collaborative platform and personal confidentiality. Another challenge is exchanging data with health care institutions while protecting the organizations' confidentiality. The primary concerns for training a universal DL model are creating a collaborative platform and preserving privacy. This paper provides a model that receives a small quantity of data from various sources, like organizations or sections of hospitals, and trains a global DL model utilizing blockchain-based Convolutional Neural Networks (CNNs). In addition, we use the Transfer Learning (TL) technique to initialize layers rather than initialize randomly and discover which layers should be removed before selection. Besides, the blockchain system verifies the data, and the DL method trains the model globally while keeping the institution's confidentiality. Furthermore, we gather the actual and novel COVID-19 patients. Finally, we run extensive experiments utilizing Python and its libraries, such as Scikit-Learn and TensorFlow, to assess the proposed method. We evaluated works using five different datasets, including Boukan Dr. Shahid Gholipour hospital, Tabriz Emam Reza hospital, Mahabad Emam Khomeini hospital, Maragheh Dr.Beheshti hospital, and Miandoab Abbasi hospital datasets, and our technique outperform state-of-the-art methods on average in terms of precision (2.7%), recall (3.1%), F1 (2.9%), and accuracy (2.8%). en_US
dc.identifier.doi 10.1016/j.compbiomed.2022.105461 en_US
dc.identifier.issn 0010-4825
dc.identifier.issn 1879-0534
dc.identifier.scopus 2-s2.0-85127131173 en_US
dc.identifier.uri https://doi.org/10.1016/j.compbiomed.2022.105461
dc.identifier.uri https://hdl.handle.net/20.500.12469/5378
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.ispartof Computers in Biology and Medicine en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Blockchain en_US
dc.subject Deep learning en_US
dc.subject Chest CT en_US
dc.subject Net En_Us
dc.subject CNN en_US
dc.subject COVID-19 en_US
dc.subject Net
dc.subject Transfer learning en_US
dc.title A privacy-aware method for COVID-19 detection in chest CT images using lightweight deep conventional neural network and blockchain en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.id Jafari Navimipour, Nima/0000-0002-5514-5536
gdc.author.id Toumaj, Shiva/0000-0002-4828-9427
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.author.wosid Jafari Navimipour, Nima/AAF-5662-2021
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.departmenttemp [Heidari, Arash] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz, Iran; [Heidari, Arash] Islamic Azad Univ, Dept Comp Engn, Shabestar Branch, Shabestar, Iran; [Navimipour, Nima Jafari] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkey; [Toumaj, Shiva] Urmia Univ Med Sci, Orumiyeh, Iran; [Unal, Mehmet] Nisantasi Univ, Dept Comp Engn, Istanbul, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 105461
gdc.description.volume 145 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4221086457
gdc.identifier.pmid 35366470 en_US
gdc.identifier.wos WOS:000819697000005 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 58.0
gdc.oaire.influence 5.007517E-9
gdc.oaire.isgreen true
gdc.oaire.keywords COVID-19
gdc.oaire.keywords Deep learning
gdc.oaire.keywords Article
gdc.oaire.keywords Transfer learning
gdc.oaire.keywords Net
gdc.oaire.keywords Chest CT
gdc.oaire.keywords Blockchain
gdc.oaire.keywords Privacy
gdc.oaire.keywords Humans
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.keywords Tomography, X-Ray Computed
gdc.oaire.keywords CNN
gdc.oaire.popularity 4.8362935E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.collaboration International
gdc.openalex.fwci 11.71497073
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 55
gdc.plumx.crossrefcites 60
gdc.plumx.mendeley 89
gdc.plumx.newscount 1
gdc.plumx.pubmedcites 12
gdc.plumx.scopuscites 62
gdc.scopus.citedcount 63
gdc.virtual.author Jafari Navimipour, Nima
gdc.wos.citedcount 53
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5378.pdf
Size:
5.16 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text