A privacy-aware method for COVID-19 detection in chest CT images using lightweight deep conventional neural network and blockchain

Loading...
Thumbnail Image

Date

2022

Authors

Heidari, Arash
Toumaj, Shiva
Navimipour, Nima Jafari
Unal, Mehmet

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science Ltd

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 1%
Influence
Top 10%
Popularity
Top 1%

Research Projects

Journal Issue

Abstract

With the global spread of the COVID-19 epidemic, a reliable method is required for identifying COVID-19 victims. The biggest issue in detecting the virus is a lack of testing kits that are both reliable and affordable. Due to the virus's rapid dissemination, medical professionals have trouble finding positive patients. However, the next real-life issue is sharing data with hospitals around the world while considering the organizations' privacy concerns. The primary worries for training a global Deep Learning (DL) model are creating a collaborative platform and personal confidentiality. Another challenge is exchanging data with health care institutions while protecting the organizations' confidentiality. The primary concerns for training a universal DL model are creating a collaborative platform and preserving privacy. This paper provides a model that receives a small quantity of data from various sources, like organizations or sections of hospitals, and trains a global DL model utilizing blockchain-based Convolutional Neural Networks (CNNs). In addition, we use the Transfer Learning (TL) technique to initialize layers rather than initialize randomly and discover which layers should be removed before selection. Besides, the blockchain system verifies the data, and the DL method trains the model globally while keeping the institution's confidentiality. Furthermore, we gather the actual and novel COVID-19 patients. Finally, we run extensive experiments utilizing Python and its libraries, such as Scikit-Learn and TensorFlow, to assess the proposed method. We evaluated works using five different datasets, including Boukan Dr. Shahid Gholipour hospital, Tabriz Emam Reza hospital, Mahabad Emam Khomeini hospital, Maragheh Dr.Beheshti hospital, and Miandoab Abbasi hospital datasets, and our technique outperform state-of-the-art methods on average in terms of precision (2.7%), recall (3.1%), F1 (2.9%), and accuracy (2.8%).

Description

Keywords

Blockchain, Deep learning, Chest CT, Net, CNN, COVID-19, Net, Transfer learning, COVID-19, Deep learning, Article, Transfer learning, Net, Chest CT, Blockchain, Privacy, Humans, Neural Networks, Computer, Tomography, X-Ray Computed, CNN

Turkish CoHE Thesis Center URL

Fields of Science

02 engineering and technology, 0202 electrical engineering, electronic engineering, information engineering

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
55

Source

Computers in Biology and Medicine

Volume

145

Issue

Start Page

105461

End Page

PlumX Metrics
Citations

CrossRef : 60

Scopus : 62

PubMed : 12

Captures

Mendeley Readers : 89

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
11.71497073

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

15

LIFE ON LAND
LIFE ON LAND Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo