• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Enstitüler / Institutes
  • Yüksek Lisans Tezleri
  • View Item
  •   DSpace Home
  • Enstitüler / Institutes
  • Yüksek Lisans Tezleri
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anomaly detection in time series

Thumbnail
View/Open
Anomaly detection in time series.pdf (1.447Mb)
Date
2019
Author
Al-Bayati, Taha A.
Abstract
The concept of "Internet of Things" is based on connecting any physical object through the internet. This will facilitate our daily lives by dedicating technology in our will. In such a world, the number other interconnected devices is enormous, hence, the need for high performance processing in real-time is huge. This research shines light on the importance of the event processing and machine learning in the time series. A multiple of machine learning algorithms such as support vector machine, decision tree, autoencoder, and K-mean clustering are used for training a time series. A comparison of different methods is analyzed to obtain a robust conclusion about the data. The time series data is used to distinguish the state of emotions for a group of people (15 in total) who participated in an experiment. The state of the emotion may be in one of the four states: stressed, amused, natural, and sad. In this work, we compared the performance of algorithms in terms of their accuracy of predicting the emotions.
 
Nesnelerin interneti kavramı herhangi bir fiziksel nesneyi internete bağlamaya dayanır. Bu, teknolojiyi isteklerimiz yönünde kullanmaya sevk ederek günlük hayatımızı etkileyecektir. Böylesi bir dünyada birbirine bağlı cihazların sayısı muazzam olacak ve gerçek zamanda yüksek performanslı very işlemeye ihtiyaç duyulacaktır. Bu araştırma, zaman serilerinde olay işleme ve makine öğrenmesinin önemi konusuna ışık tutmaktadır. Bir zaman serisinin eğitimi için farklı makine öğrenmesi algoritmaları kullanılmıştır: destek vektör makinesi, karar ağaçları, otokodlayıcı ve K-ortalama öbekleyici. Veri hakkında sağlam bir sonuca varmak için farklı yöntemlerin kıyaslaması yapılmıştır. Bu zaman serisi verisi 15 kişilik bir grubun duygu durumunu ayırt etmeye yarayan ölçümlere dayanmaktadır. Bunlar şu dört durumdan biridir: stresli, eğlenmiş, doğal, üzgün. Bu çalışmada duyguların öngörülmesindeki doğruluk cinsinden algoritmaların performansları karşılaştırılmıştır.
 

URI

https://hdl.handle.net/20.500.12469/2784

Collections

  • Yüksek Lisans Tezleri [1075]

Keywords

Internet of Things
healthcare
anomaly detection
machine learning
Nesnelerin interneti
sağlık hizmetleri
anormallik yakalama
makine öğrenmesi

Share


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access TypesThis CollectionBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access Types

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV