The impact of text preprocessing on the prediction of review ratings

dc.contributor.authorDağ, Hasan
dc.contributor.authorDağ, Hasan
dc.date.accessioned2020-06-04T17:15:31Z
dc.date.available2020-06-04T17:15:31Z
dc.date.issued2020
dc.departmentFakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümüen_US
dc.description.abstractWith the increase of e-commerce platforms and online applications, businessmen are looking to have a rating and review system through which they can easily reveal the feelings of customers related to their products and services. It is undeniable from the statistics that online ratings and reviews attract new customers as well as increase sales by means of providing confidence, ratification, opinions, comparisons, merchant credibility, etc. Although considerable research has been devoted to the sentiment analysis for review classification, rather less attention has been paid to the text preprocessing which is a crucial step in opinion mining especially if convenient preprocessing strategies are found out to increase the classification accuracy. In this paper, we concentrate on the impact of simple text preprocessing decisions in order to predict fine-grained review rating stars whereas the majority of previous work focused on the binary distinction of positive vs. negative. Therefore, the aim of this research is to analyze preprocessing techniques and their influence, at the same time explain the interesting observations and results on the performance of a five-class-based review rating classifier.en_US
dc.identifier.citation8
dc.identifier.doi10.3906/elk-1907-46en_US
dc.identifier.endpage1421en_US
dc.identifier.issn1300-0632en_US
dc.identifier.issn1303-6203en_US
dc.identifier.issn1300-0632
dc.identifier.issn1303-6203
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85084540483en_US
dc.identifier.scopusqualityQ3
dc.identifier.startpage1405en_US
dc.identifier.trdizinid338421en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/2882
dc.identifier.urihttps://doi.org/10.3906/elk-1907-46
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/338421
dc.identifier.volume28en_US
dc.identifier.wosWOS:000532359500015en_US
dc.identifier.wosqualityQ4
dc.institutionauthorDaǧ, Hasanen_US
dc.language.isoenen_US
dc.publisherTubitaken_US
dc.relation.journalTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectText preprocessingen_US
dc.subjectSentiment analysisen_US
dc.subjectOpinion miningen_US
dc.subjectReview ratingen_US
dc.subjectText miningen_US
dc.titleThe impact of text preprocessing on the prediction of review ratingsen_US
dc.typeWorking Paperen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscoverye02bc683-b72e-4da4-a5db-ddebeb21e8e7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The impact of text preprocessing on the prediction of review ratings.pdf
Size:
151.7 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: