An equivalence class decomposition of finite metric spaces via Gromov products
dc.contributor.author | Bilge, Ayşe Hümeyra | |
dc.contributor.author | Çelik, Derya | |
dc.contributor.author | Koçak, Şahin | |
dc.date.accessioned | 2020-12-22T20:15:24Z | |
dc.date.available | 2020-12-22T20:15:24Z | |
dc.date.issued | 2017 | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.description.abstract | Let (X, d) be a finite metric space with elements P-i, i = 1,..., n and with the distance functions d(ij) The Gromov Product of the "triangle" (P-i, P-j, P-k) with vertices P-t, P-j and P-k at the vertex Pi is defined by Delta(ijk) = 1/2(d(ij) + d(ik) - d(jk)). We show that the collection of Gromov products determines the metric. We call a metric space Delta-generic, if the set of all Gromov products at a fixed vertex P-i has a unique smallest element (for i = 1,., n). We consider the function assigning to each vertex P-i the edge {P-i, P-k} of the triangle (P-i, P-j, P-k) realizing the minimal Gromov product at P-i and we call this function the Gromov product structure of the metric space (X, d). We say two Delta-generic metric spaces (X, d) and (X, d') to be Gromov product equivalent, if the corresponding Gromov product structures are the same up to a permutation of X. For n = 3, 4 there is one (Delta-generic) Gromov equivalence class and for n = 5 there are three (Delta-generic) Gromov equivalence classes. For n = 6 we show by computer that there are 26 distinct (Delta-generic) Gromov equivalence classes. (C) 2017 Elsevier B.V. All rights reserved. | en_US |
dc.identifier.citation | 2 | |
dc.identifier.doi | 10.1016/j.disc.2017.03.023 | en_US |
dc.identifier.endpage | 1932 | en_US |
dc.identifier.issn | 0012-365X | en_US |
dc.identifier.issn | 1872-681X | en_US |
dc.identifier.issn | 0012-365X | |
dc.identifier.issn | 1872-681X | |
dc.identifier.issue | 8 | en_US |
dc.identifier.scopus | 2-s2.0-85018902568 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1928 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/3625 | |
dc.identifier.uri | https://doi.org/10.1016/j.disc.2017.03.023 | |
dc.identifier.volume | 340 | en_US |
dc.identifier.wos | WOS:000402211100016 | en_US |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Bilge, Ayşe Hümeyra | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.journal | Discrete Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Finite metric spaces | en_US |
dc.subject | Gromov product | en_US |
dc.subject | Weighted graphs | en_US |
dc.title | An equivalence class decomposition of finite metric spaces via Gromov products | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
relation.isAuthorOfPublication.latestForDiscovery | 1b50a6b2-7290-44da-b8d5-f048fea8b315 |