An equivalence class decomposition of finite metric spaces via Gromov products
No Thumbnail Available
Date
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Bv
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Let (X, d) be a finite metric space with elements P-i, i = 1,..., n and with the distance functions d(ij) The Gromov Product of the "triangle" (P-i, P-j, P-k) with vertices P-t, P-j and P-k at the vertex Pi is defined by Delta(ijk) = 1/2(d(ij) + d(ik) - d(jk)). We show that the collection of Gromov products determines the metric. We call a metric space Delta-generic, if the set of all Gromov products at a fixed vertex P-i has a unique smallest element (for i = 1,., n). We consider the function assigning to each vertex P-i the edge {P-i, P-k} of the triangle (P-i, P-j, P-k) realizing the minimal Gromov product at P-i and we call this function the Gromov product structure of the metric space (X, d). We say two Delta-generic metric spaces (X, d) and (X, d') to be Gromov product equivalent, if the corresponding Gromov product structures are the same up to a permutation of X. For n = 3, 4 there is one (Delta-generic) Gromov equivalence class and for n = 5 there are three (Delta-generic) Gromov equivalence classes. For n = 6 we show by computer that there are 26 distinct (Delta-generic) Gromov equivalence classes. (C) 2017 Elsevier B.V. All rights reserved.
Description
Keywords
Finite metric spaces, Gromov product, Weighted graphs
Turkish CoHE Thesis Center URL
Fields of Science
Citation
2
WoS Q
Q3
Scopus Q
Q1
Source
Volume
340
Issue
8
Start Page
1928
End Page
1932