On the Classification of Scalar Evolution Equations With Non-Constant Separant
| gdc.relation.journal | Journal of Physics A: Mathematical and Theoretical | en_US |
| dc.contributor.author | Bilge, Ayşe Hümeyra | |
| dc.contributor.author | Mizrahi, Eti | |
| dc.contributor.other | Industrial Engineering | |
| dc.contributor.other | 05. Faculty of Engineering and Natural Sciences | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2019-06-27T08:01:24Z | |
| dc.date.available | 2019-06-27T08:01:24Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | The ` separant' of the evolution equation u(t) = F where F is some differentiable function of the derivatives of u up to order m is the partial derivative partial derivative F/partial derivative u(m) where um u(m) = partial derivative(m)u/partial derivative x(m). As an integrability test we use the formal symmetry method of Mikhailov-Shabat-Sokolov which is based on the existence of a recursion operator as a formal series. The solvability of its coefficients in the class of local functions gives a sequence of conservation laws called the 'conserved densities' rho((i)) i = -1 1 2 3 ... We apply this method to the classification of scalar evolution equations of orders 3 <= m <= 15 for which rho((-)) = [partial derivative F/partial derivative u(m)](-1/m) and rho((1)) are non-trivial i.e. they are not total derivatives and rho((-1)) is not linear in its highest order derivative. We obtain the 'top level' parts of these equations and their ` top dependencies' with respect to the 'level grading' that we defined in a previous paper as a grading on the algebra of polynomials generated by the derivatives u(b+i) over the ring of C-infinity functions of u u(1) .. u(b). In this setting b and i are called 'base' and 'level' respectively. We solve the conserved density conditions to show that if rho((-)) depends on u u(1) ... u(b) then these equations are level homogeneous polynomials in u(b+i) ... u(m) i >= 1. Furthermore we prove that if rho((3)) is nontrivial then rho((-)) = (alpha mu(2)(b) (3) is trivial then ub 1/3 where b similar to 5 and a .. and mu are functions of u. ub-1. We show that the equations that we obtain form commuting flows and we construct their recursion operators that are respectively of orders 2 and 6 for non-trivial and trivial (3) respectively. Omitting lower order dependencies we show that equations with non-trivial (3) and b = 3 are symmetries of the ` essentially non-linear third order equation' | en_US] |
| dc.description.abstract | for trivial rho((3)) the equations with b = 5 are symmetries of a non-quasilinear fifth order equation obtained in previous work while for b = 3 4 they are symmetries of quasilinear fifth order equations. | en_US] |
| dc.identifier.citationcount | 0 | |
| dc.identifier.doi | 10.1088/1751-8121/50/3/035202 | en_US |
| dc.identifier.issn | 1751-8113 | en_US |
| dc.identifier.issn | 1751-8121 | en_US |
| dc.identifier.issn | 1751-8113 | |
| dc.identifier.issn | 1751-8121 | |
| dc.identifier.scopus | 2-s2.0-85008471356 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/370 | |
| dc.identifier.uri | https://doi.org/10.1088/1751-8121/50/3/035202 | |
| dc.language.iso | en | en_US |
| dc.publisher | IOP Publishing Ltd | en_US |
| dc.relation.ispartof | Journal of Physics A: Mathematical and Theoretical | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Classificaiton | en_US |
| dc.subject | Differential polynomials | en_US |
| dc.subject | Evolution equations | en_US |
| dc.subject | Hierarchies | en_US |
| dc.title | On the Classification of Scalar Evolution Equations With Non-Constant Separant | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Bilge, Ayşe Hümeyra | en_US |
| gdc.author.institutional | Bilge, Ayşe Hümeyra | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
| gdc.description.issue | 3 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 035202 | |
| gdc.description.volume | 50 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W3105976651 | |
| gdc.identifier.wos | WOS:000390820600002 | en_US |
| gdc.oaire.accesstype | BRONZE | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5942106E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | 35Q53, 37K10 | |
| gdc.oaire.keywords | Evolution equations | |
| gdc.oaire.keywords | FOS: Physical sciences | |
| gdc.oaire.keywords | Mathematical Physics (math-ph) | |
| gdc.oaire.keywords | Classificaiton | |
| gdc.oaire.keywords | Hierarchies | |
| gdc.oaire.keywords | Mathematical Physics | |
| gdc.oaire.keywords | Differential polynomials | |
| gdc.oaire.popularity | 9.69847E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.0 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
| relation.isAuthorOfPublication.latestForDiscovery | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
| relation.isOrgUnitOfPublication | 28868d0c-e9a4-4de1-822f-c8df06d2086a | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 28868d0c-e9a4-4de1-822f-c8df06d2086a |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On the classification of scalar evolution equations with non-constant separant.pdf
- Size:
- 1.01 MB
- Format:
- Adobe Portable Document Format
- Description: