On the classification of scalar evolution equations with non-constant separant

Loading...
Thumbnail Image

Date

2017

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

The ` separant' of the evolution equation u(t) = F where F is some differentiable function of the derivatives of u up to order m is the partial derivative partial derivative F/partial derivative u(m) where um u(m) = partial derivative(m)u/partial derivative x(m). As an integrability test we use the formal symmetry method of Mikhailov-Shabat-Sokolov which is based on the existence of a recursion operator as a formal series. The solvability of its coefficients in the class of local functions gives a sequence of conservation laws called the 'conserved densities' rho((i)) i = -1 1 2 3 ... We apply this method to the classification of scalar evolution equations of orders 3 <= m <= 15 for which rho((-)) = [partial derivative F/partial derivative u(m)](-1/m) and rho((1)) are non-trivial i.e. they are not total derivatives and rho((-1)) is not linear in its highest order derivative. We obtain the 'top level' parts of these equations and their ` top dependencies' with respect to the 'level grading' that we defined in a previous paper as a grading on the algebra of polynomials generated by the derivatives u(b+i) over the ring of C-infinity functions of u u(1) .. u(b). In this setting b and i are called 'base' and 'level' respectively. We solve the conserved density conditions to show that if rho((-)) depends on u u(1) ... u(b) then these equations are level homogeneous polynomials in u(b+i) ... u(m) i >= 1. Furthermore we prove that if rho((3)) is nontrivial then rho((-)) = (alpha mu(2)(b) (3) is trivial then ub 1/3 where b similar to 5 and a .. and mu are functions of u. ub-1. We show that the equations that we obtain form commuting flows and we construct their recursion operators that are respectively of orders 2 and 6 for non-trivial and trivial (3) respectively. Omitting lower order dependencies we show that equations with non-trivial (3) and b = 3 are symmetries of the ` essentially non-linear third order equation'
for trivial rho((3)) the equations with b = 5 are symmetries of a non-quasilinear fifth order equation obtained in previous work while for b = 3 4 they are symmetries of quasilinear fifth order equations.

Description

Keywords

Classificaiton, Differential polynomials, Evolution equations, Hierarchies

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q2

Scopus Q

Q1

Source

Volume

50

Issue

3

Start Page

End Page